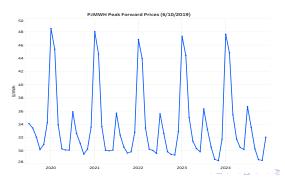
Pricing in a Stochastic Environment

Glen Swindle

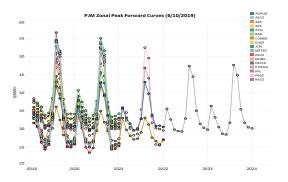
Scoville Risk Partners

June 18, 2019


Commodities Markets

The Purpose of (Electricity) Markets

- Commodities Markets
 - Spot price formation which clears supply and demand.
 - Efficient deployment of capital.
- Electricity Markets
 - More than just real-time balance of supply and demand.
 - Reliability
 - Ancillaries (short time-scale)
 - Capacity (long time-scale)
 - Investment
 - Cost: Build assets that are likely to lower cost.
 - Locational: Try to build assets where they are needed.
- Transparency and stability of market mechanics yields more efficient investment.


Forward Energy Markets

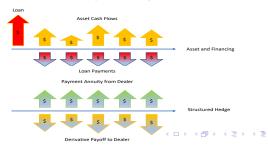
- Buy/sell electricity for a future delivery month.
 - Delivered uniformly over a bucket (e.g. peak hours).
- The following figure shows PJM Western Hub forwards.
 - Each value represents the price (\$/MWh) at close-of-business for uniform delivery of on-peak power over the month.
 - Derived from exchange settles (ICE,CME) and Bloomberg.


Forward Energy Markets

- Forward prices "exist" for most delivery zones.
- Liquidity can vary substantially.
 - Benchmarks are liquidity centers—in this case PJMWH.
- \bullet Forward markets depend on stability and integrity of ISO/RTO price formation.

Forward Energy Markets

- The forward price is the market value for the distribution of future spot prices.
 - This figure shows a simulated (to be discussed) distribution of PSEG monthly average peak spot prices for Jul2020.
- The driver for trading activity is the management of end-user risks.
 - Companies wanting to protect futures cashflows by hedging.
 - Lenders requiring asset developers to hedge cashflows.
- Forwards are the risk transfer work horses.
 - Many types of derivatives trade, but all are "anchored" to forwards.

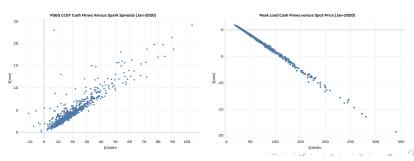


High-Dimensional Market

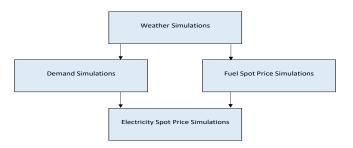
- Why do all of these forwards trade? Under the LMP paradigm:
 - People want hedges as "close" to their assets as possible.
 - Generation assets (and some loads) settle on nodal spot prices.
 - Most load settles at zonal prices.

Project Finance Example

- Asset build funded by debt; lenders insist on a hedge that protects the asset cashflows.
- The hedge is a derivative (commonly heat rate call options or revenue puts).
- Asset cashflows driven by nodal prices; but dealers insist on zonal (or hub) prices for the hedge.
- Modeling is required to ensure that:
 - The interest payments are covered by the annuity from the hedge.
 - The asset cashflows cover the payoff of the hedge.


Valuing and Hedging Assets

Things get complicated quickly.


- No known asset produces a constant volume with certainty.
- Conventional generation assets are complicated things.
- Nodal prices can behave erratically.
- Short load positions are inevitably stochastic in nature.

Models fill gaps.

- The results below are simulated payoffs for a CCGT and a load transaction.
- The analytics required to produce such results are nontrivial.

Typical Organization of Simulation Framework

Weather Simulations

$$\tau_{J} = \mu_{J} + \sigma_{J} X_{J}$$

where e.g.:

$$\mu_d = \alpha_0 + \alpha_1 (d - d_*) + \sum_{k=0}^{K} \left[c_k \sin(2\pi k \varphi(d)) + \cdots \right]$$

- Calibrated to decades of h quasistationary historical data.
- The residuals X are often modeled
- as ARMAs.

 Correlation structure between
- Correlation structure between different locations is nontrivial

Demand Simulations

$$L_{d} = \alpha + \beta (d - d_{*}) + \sum_{k=1}^{K} \theta^{k} (\tau_{d}) + \sigma_{L} \varepsilon_{d}$$

where heta mollifies temperatures.

- Calibrated to a few years of historical data.
- Load growth handled by drift term.
- Additional seasonality can be handled by Fourier terms.
- Hourly loads from stochastic shaping coefficients \$\vec{s}_d\$:

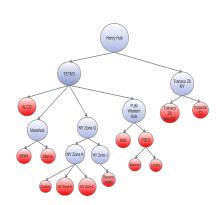
$$\vec{L}_d = \vec{s}_d L_d$$

Spot Price Simulations

Regression Based (bucket level):

$$\log \left[\frac{P_d}{\tilde{P}_d} \right] = \alpha + \gamma \tilde{P}_d + \sum_{k=1}^{K} \theta^k (\tau_d) + \varepsilon_d$$

Hourly prices: $\vec{p}_{\scriptscriptstyle d} = \vec{s}_{\scriptscriptstyle d} p_{\scriptscriptstyle d}$


$$P_d - \sigma_d P$$

Stack Based

$$\vec{p}_{\scriptscriptstyle d} = \Psi_{\scriptscriptstyle G_{\scriptscriptstyle c}} \left[\left. \vec{L}_{\scriptscriptstyle d} \right| \vec{F}_{\scriptscriptstyle d} \right. \right] + \vec{\varepsilon}_{\scriptscriptstyle d}$$

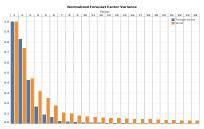
Coupling Across Many Processes

- To understand a portfolio (or an ISO/RTO) a large number of processes must be realistically coupled.
- For weather parametric forms (e.g. standard time series) are very challenging—replace with bootstrap of residuals.
- For spot prices hierarchical organization renders regressions/simulations tractable.
- Each bond represents a regression, and residuals are coupled via bootstrap.

Some Practical Considerations

- All of the analysis above presumes stability of physical system.
 - Discontinuities in price formation algorithms or topology are challenging.
 - Partially mitigated by calibration to traded market prices.
- Non-Energy Costs:
 - Capacity markets:
 - Annual auctions provide a visible well-defined value(cost) to generation(load).
 - Limited trading activity—difficult to hedge.
 - Limited tenor-roughly 3 years.
 - Ancillaries:
 - Essentially no hedging activity.
 - Difficult to model with the precision required to use energy as proxy hedges.
 - "Review invoices."

As Things Stand Now


- Deterministic algorithms (SCED) minimize cost:
 - Inputs:
 - Forecasted loads.
 - Generation offers (including constraints).
 - Anticipated system configuation and contingencies.
 - Results:
 - Locational marginal prices (shadow prices for incremental increase in locational demand).
 - Ancillary prices arising from rules-based requirements.

Comments:

- Sources of Randomness:
 - Load has been the primary source of "Gaussian" randomness.
 - Generators are the primary sources of "Poisson" randomness—outages.
- Cost of Randomness:
 - Handled (in arrears) via unit flexibility, ancillaries and uplift.
 - Load (the short) pays for most of it.
- Incentives:
 - Load is penalized for forecasting errors.
 - Generators are rewarded for reliablity by capacity payments and energy/ancillary margin.

Sources of Randomness

- Intermittency in renewables production is a new and pronounced source of randomess.
 - The nature of the hourly dynamics differs from load.
 - Load is primarily temperature driven.
 - This figure shows the results of factor analysis of forecasting errors at KABI (Abilene).
 - The time series used are 24 hourly forecasting errors (-1d) for temperature and wind from 2015 to the present.
 - Note the slower decay in wind spectrum—dynamics of wind forecasting error is "rougher."
 - Similar at other locations (e.g. KPHL).

Non-LMP "Stylized" Setting

- Setup
 - 24 hour setting.
 - Dispatchable Generation
 - Allowed generation levels $ec{g}_j \in \mathcal{A}_j$ for $j=1,\ldots J$.
 - Cost $c_j(g_j)$; depends on generation levels, fuels and constraints.
 - Load Net of Intermittent Supply
 - $\vec{L}_* = \sum_{k=1}^{K} \vec{L}_k.$
 - Each \vec{L}_k is a stochastic 24-dimensional process.
- Deterministic Optimization (The "current" way)
 - Minimize the cost to serve the expected net load $\vec{\mu}_{L_*}$:

$$C\left(\vec{\mu}_{L_*}\right) = \min_{\mathbf{g}.\in\mathcal{A}_*} \sum_{j} c_j\left(\vec{\mathbf{g}}_j\right) \quad \text{where} \quad \mathcal{A}_* = \begin{cases} \mathbf{g}.\in\mathcal{A}. \\ \vec{\mathbf{1}}^{\mathsf{T}}\mathbf{g}. = \vec{\mu}_{L_*} \end{cases}$$

- Spot prices are marginal incremental cost: $\vec{p} = \nabla_{\vec{\mu}_{L_*}} C \left(\vec{\mu}_{L_*} \right)$.

Non-LMP "Stylized" Setting

With Randomness

- You need to decide before \vec{L}_* is realized how you are going to handle matters.
- A single set of clearing prices cannot simulataneously balance loads while rewarding "good" participants and penalizing the "bad".
- Introduce generation offers π_i to participate in the DA market—a "daily capacity" market.
- ISO/RTO chooses which to accept—accept flag $F_i \in \{0, 1\}$.
- The new optimization problem is:

$$\min_{\vec{F}} \left(E \left[\min_{g. \in \mathcal{A}_*} \sum_{j} c_j \left(\vec{g}_j \right) \right] + \vec{\pi}^t \vec{F} \right) \quad \text{where} \quad \mathcal{A}_* = \begin{cases} g. \in \mathcal{A}. \\ \vec{\mathbf{I}}^t g. = \vec{\mu}_{L_*} \\ \vec{g}_j \equiv 0 \quad \text{if} \quad F_j = 0 \end{cases}$$

- This is saying that you select generators competively based upon their bids π and their flexibility.
- Spot prices remain the marginal cost of the realized load \vec{L}_* : $\vec{p} = \nabla_{\vec{l}_*} C(\vec{l}_*)$.
- The marginal cost of each factor (PCA) of the total load \vec{L}_* is computed by perturbation.
- The "daily capacity" cost is allocated to each L_k based upon contribution to each factor.

Non-LMP "Stylized" Setting

On the Positive Side

- A key input to such an approach is credible modeling of the joint behavior of a large number of contributing loads and supply \vec{L}_k . This is already within reach of existing technology.
- The calculation of the marginal capacity cost to changes in the covariance of \vec{L}_* is directly analogous to marginal VaR calculations in other areas of finance.

Neutral

- The calculation of marginal capacity costs will require dealing with the "lumpiness" of the $\vec{\pi}^t \vec{F}$ term. This is also an issue that is being dealt with in existing dispatch calculations.
- It is likely that constraints on bid behavior will be required—restrictions on who can submit
 positive offers and how high such can be. Similar issues already arise in existing capacity markets.

On the Negative Side

- Balancing accurate modeling of the joint loads \vec{L}_k with transparency to those on the receiving end of the daily capacity cost will be challenging.
- The calculations required for stochastic optimization are daunting—even in say a lower-dimensional zonal setting.

A Likely Tradeoff

- Keep LMP as is and deploy a calculation like the above to reward flexilbilty on longer length scales.
- Roll LMP back to say zonal prices to facilitate a single spot price / flexibility price calculation.